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1.  Introduction 
An analytical solution for the intrinsic impedance of a material has been 
found, given the transmitted and reflected transverse electromagnetic 
(TEM) wave, for the classical three-region problem. This problem is illus- 
trated in figure 1, where regions one and three are air, and region two is the 
material under test. 

Equations (1) and (2) are the well-known solutions for the transmitted and 
reflected TEM waves. 

b?i — - 
4e-**n0Tl: 

321 

(i!o + Th 
1-e      (TI0-TI2) 

OI0 + TI2) 

(1) 

r|2 1 + 
g-^TIo-Th) 

"V 
1- 

e-2idkm0-n2 
Tlo + rl2 

■"li ■ 
(2) 

Tl0 + Tl2 

where d = region length and k = wave number. Mathematica™ was used to 
solve these equations in terms of the intrinsic impedance of the material r)2; 
regions one and three have the same intrinsic impedance r|0. This solution 
is unique [1,2] in that it is not a numerical solution nor does it neglect re- 
flections from the interface of region 2 with region 3. The solution can be 
used along with coaxial vector network analyzer measurements to provide 
a simple way of determining the intrinsic impedance and permittivity of 
nonmagnetic materials. The technique described in this paper is comple- 
mentary to cavity methods: it is best suited for lossy materials over large 

Figure 1. Classical 
three-region 
problem: regions one 
and three are air, and 
region two is the 
material under test. 
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frequency ranges, whereas cavity techniques are better suited for measur- 
ing low-loss materials at single frequencies. 

2.  Calculations 
Solving equation (2) for k results in 

z\   -V-'nl + SnTif-2Snri2n0 + nj + Snr|c
2 

fc^-iln-^1*      LL •*    "" ■"■»     lu    -11-'0 . (3) 
V-^2 + SnTlf + 2S11Tl2Tl0 + Tl5 + S11TlJ 

Substituting k from equation (3) into equation (1) gives S21 (eq (4)) as a 
function of Sn, T|0, and T|2: 
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Now, solving equation (4) for r\2 and letting TJ0 = 376.789 Q. for air results in 
equation (5), which expresses the intrinsic impedance of the material in 
terms of the scattering parameters Sn and S21: 

^  _ 376.789^-l-2Sn-S2
n + S^ 

2 v/-l+2Sn-S?1 + Si1 

S1:1 and S21 in equation (5) are in terms of voltage and are complex num- 
bers. The dielectric constant and loss tangent can then be calculated from 
the intrinsic impedance, if the material is nonmagnetic. The intrinsic im- 
pedance T| equals (z/y)1/2, where y = coe" + joe', and z = cou" + ;'cojx' [3]. If we 
let u" = 0 for no magnetic losses and solve for the complex permittivity £, in 
terms of permeability ((j.') and n, we get 

e'-/e" = u7ri, (6) 

where the relative dielectric constant, er, is e'/e0, and the loss tangent, tan 8, 
is e"/e' [3]. A program was written using PV-wave™ that solves for e' and e" 
as a function of frequency, using equation (5) to determine the intrinsic im- 
pedance and equation (6), with u' = 4n x 10"7 H/m (free space u0), to deter- 
mine permittivity, given measured S -parameters as a function of frequency 

3.  Limitations 
When tan S is at or below about 0.1, there are errors at frequencies where 
the material sample is an integer multiple of a half wavelength because the 
magnitude of Su is such a small number. But these errors are easily recog- 
nized as stray points at integer multiples of a half wavelength. When tan 5 



is at or below about 0.01, the imaginary part of permittivity er" tends to 
have large error simply because the numbers are so small. Also, the phase 
of Sn cannot be accurately measured for small magnitudes of Sn; therefore, 
if accurate results are desired for the imaginary part of the permittivity, 
the use of the equations will be limited to lossy dielectric materials 
(tan 8 > 0.1). 

4.  Experimental Results 
The National Institute of Standards and Technology (NIST) supplied S- 
parameter measurements for two dielectric material samples, cross-linked 
polystyrene and nylon. A 7-mm-diameter, 10-cm-long air line coaxial fix- 
ture was used to make the measurements. The cross-linked polystyrene 
and nylon were 55 and 15 mm long, respectively. The samples were placed 
in the air line such that the sample was flush with the port 1 side of the co- 
axial air line, and S-parameter measurements were made on a vector net- 
work analyzer from 10 MHz to 1 GHz. The relative permittivities—er' and 
e ", of cross-linked polystyrene and nylon, respectively—were calculated 
with the use of the program described above, but with corrections for the 
phase of S21 because the material samples were shorter than the air line. 
Corrections were also used to account for the small air gaps between the 
center conductor and the material and the outer conductor and the mate- 
rial [4]. The results compare with results given by NIST, which used its 
EPSMU software [4], with relatively good agreement, despite the low tan 8 
(<0.1) of both nylon and cross-linked polystyrene (see fig. 2 and 3). 
The curve in the data near 10 MHz is attributed to the accuracy of the 
S-parameter measurements at these low frequencies. * 

Figure 2. Comparison   (a) 
of ARL's calculations 
and NIST's EPSMU 
software: (a) e ' 
plotted as a function 
of frequency for 
nylon. 
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*Discussion with M. Janezic of National Institute of Standards and Technology, April 1995. 



Figure 2 (cont'd). (b) 
Comparison of ARL's 
calculations and 
NIST's EPSMU 
software: (b) er" 
plotted as a function 
of frequency for * ^ 
nylon. 
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Figure 3. Comparison 
of ARL's calculations 
and NIST's EPSMU 
software: (a) er' and 
(b) er" plotted as a 
function of frequency 
for crosslinked 
polystyrene. 
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5. Discussion and Conclusions 
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